مقدمه ای بر شبکه های عصبی

 مقدمه ای بر شبکه های عصبی


این تحقیق با دو هدف اصلی زیر صورت گرفته است : 1.درک اولیه ای از شبکه های عصبی  2.شروع یک رویه تحقیقاتی بلند مدت روی یادگیری ویاد آوری در انسان. در این تحقیق از منابع بسیار متنوعی استفاده شده است . ابتدا یک بررسی اجمالی روی انواع شبکه های عصبی انجام شده است و نوع پرسپترون به دلیل کاربرد فراوان بیشتر شرح داده شده است. این تحقیق صرفا گرداوری است تا پس از تکمیل تر شدن اطلاعات شاید افقی جدید حاصل شود. سپس در باره یادگیری ماشین و نیز یادگیری انسان مطالبی مبسوط آورده شده است و در پایان با مقایسه یافته ها با برخی یافته های پزشکی چند قیاس انجام گردیده. در پایان خلاصه ای از مبحث پردازش تصویر که شبکه های عصبی در آن کاربرد ویژه ای دارند .

خرید و دانلود  مقدمه ای بر شبکه های عصبی


برق 100. توسعه یک آنالیز و کنترل زمان-واقعی مبنی بر FPGA برای واسط های تولید توزیع شده

 برق 100. توسعه یک آنالیز و کنترل زمان-واقعی مبنی بر FPGA برای واسط های تولید توزیع شده


توسعه یک آنالیز و کنترل زمان-واقعی مبنی بر FPGA برای واسط های تولید توزیع شده
    چکیده__ انرژِ بدست آمده از منابع تجدید پذیر این روزها بسیار مهم شده اند، و این اساسا بدلیل سهم ناچیزشان در تولید گازهای گلخانه ای است. مساله ای که مطرح می شود این است که چطور می توان این منابع جدید را به شبکه های سنتی برق اضافه کرد، بطوری که بازده و قابلیت اطمینان این سیستم های تولید توزیع شده (DG) بیشینه شود. سخت افزار مورد نیاز برای این کار بطور کلی یک اینورتر منبع ولتاژی (VSI) است که یک بار معمولی _مانند کاربردهای تک-فاز مسکونی و تجاری_ را تامین کند. همچنین، فرآیند بهینه سازی نایزمند تجزیه تحلیل های معمولی توان می باشد. این مقاله توسعه و ارزیابی های آزمایشی یک سیستم کنترل توان برای یک VSI متصل به شبکه تک-فاز، شامل تحلیل توان را، با استفاده از یک پردازشگر برای پیاده سازی کنترل _یک مدار "آرایه کیت قابل برنامه ریزی میدان" (FPGA)_ ارایه می دهد. ساختار جدید سخت افزار شبکه عصبی خطی تطبیقی (ADALINE)، پیاده سازی الگوریتم های سیستم قدرت را ممکن ساخته، و همچنین اجازه تحلیل زمان-واقعی هارمونیک های مرتبه-بالا را بدون افزایش دادن ناحیه پیاده سازی مدار FPGA، خواهد داد. این ویژگی ها برای واسط های الکترونیک قدرتی DG جدید ایده آل می باشد، که می توان از آن نه تنها برای فرستادن توان اکتیو، بلکه برای جبران سازی هارمونیک ها و توان راکتیو نیز، استفاده کرد. شبیه سازی و نتایج تجربی طرح های پیشنهادی با فرکانس های ثابت و متغیر نیز، پیوست شده اند تا اعتبار انها مورد تاکید قرار گیرد.
    اصطلاحات مربوط__ شبکه عصبی مصنوعی (ANN)، تولید توان توزیع شده، تجزیه و تحلیل توان، آرایه های منطقی قابل برنامه ریزی، اندازه گیری توان، اعوجاج هارمونیکی کل.

خرید و دانلود  برق 100. توسعه یک آنالیز و کنترل زمان-واقعی مبنی بر FPGA برای واسط های تولید توزیع شده


محاسبه میزان دمای فتوولتائیک با استفاده از شبکه های عصبی مصنوعی

 محاسبه میزان دمای  فتوولتائیک با استفاده از شبکه های عصبی مصنوعی


مقاله ای ISI به زبان انگلیسی 10 صفحه ای با عنوان (محاسبه میزان دمای فتوولتائیک با استفاده از شبکه های عصبی مصنوعی)
به همراه ترجمه فارسی در قالب 17 صفحه + اشکال و نمودار 

خرید و دانلود  محاسبه میزان دمای  فتوولتائیک با استفاده از شبکه های عصبی مصنوعی


مقاله ای ISI (شبکه های عصبی مصنوعی)

 مقاله ای ISI  (شبکه های عصبی مصنوعی)


مقاله (ISI) ترجمه شده در خصوص


)شبکه عصبی مصنوعی ناظر بر مبدل نیمه پل DC/DC نامتقارن(


در قالب 5 صفحه لاتین و اشکال


و17 صفحه ترجمه فارسی آن شامل تمامی فرمول ها و اشکال

 

نویسنده : A. Gnanasaravanan, M. Rajaram

 

 

 


خرید و دانلود  مقاله ای ISI  (شبکه های عصبی مصنوعی)


مدیریت 177. پیش‌بینی موفقیت ERP: یک رهیافت شبکه عصبی مصنوعی

 مدیریت 177. پیش‌بینی موفقیت ERP: یک رهیافت شبکه عصبی مصنوعی


پیش‌بینی موفقیت ERP: یک رهیافت شبکه عصبی مصنوعی
کلیدواژه‌هابرنامه‌ریزی منابع سازمان (ERP) ؛ موفقیت ERP؛ مشخصات/عامل‌های سازمانی؛ شبکه عصبی مصنوعی (ANN) ؛ سیستم خبره
چکیدهبه سیستم برنامه‌ریزی منابع سازمان (ERP) بعنوان نمونه‌ای از سیستم‌های اطلاعات جدید اشاره شده است. با اینحال، دست یافتن به سطح مناسبی از موفقیت ERP متکی به عامل‌های گوناگونی است که این عوامل به یک محیط سازمانی یا پروژه‌ای وابسته هستند. در این مقاله، درمورد ایده پیش‌بینی موفقیت پیش از پیاده‌سازی ERP براساس مشخصات سازمانی، بحث شده است. همچنانکه با نیاز به ایجاد انتظارات از سازمان‌های ERP، یک سیستم خبره با استفاده از روش شبکه عصبی مصنوعی(ANN) برای بیان روابط بین برخی از عوامل سازمانی و موفقیت ERP توسعه داده شد. نقش سیستم خبره در آماده سازی برای به دست آوردن اطلاعات از شرکت های جدید که مایل به پیاده سازیERP هستند، و برای پیش بینی سطح محتمل موفقیت سیستم، است. برای این منظور، عامل‌های مشخصات سازمانی به رسمیت شناخته شده و مدل ANN توسعه داده شده است. سپس، با 171 داده بررسی شده به دست آمده از شرکت‌های خاور میانه که ERP  را تجربه کرده‌اند اعتباردهی می‌شوند. سیستم خبره آموزش دیده، با ضریب همبستگی متوسط 0.744پیش‌بینی می‌کند که نسبتاً بالا است و این ایده وابستگی موفقیت ERP به مشخصات سازمانی را حمایت می کند. علاوه بر این، نرخ طبقه بندی صحیح مجموع 0.685 نشان می دهد قدرت پیش بینی خوب است، که می تواند به پیش بینی موفقیت ERP شرکت‌ها قبل از پیاده سازی سیستم کمک نماید. 

خرید و دانلود  مدیریت 177. پیش‌بینی موفقیت ERP: یک رهیافت شبکه عصبی مصنوعی