برق 68. ترکیب الگوریتم ژنتیک و الگوریتم بهینه‌سازی ازدحام ذرات برای یافتن اندازه و مکان بهینۀ تولید پراکنده در سیستم‌های توزیع

 برق 68. ترکیب الگوریتم ژنتیک و الگوریتم بهینه‌سازی ازدحام ذرات برای یافتن اندازه و مکان بهینۀ تولید پراکنده در سیستم‌های توزیع


ترکیب الگوریتم ژنتیک و الگوریتم بهینه‌سازی ازدحام ذرات برای یافتن اندازه و مکان بهینۀ تولید پراکنده در سیستم‌های توزیع
چکیدهمنابع تولید پراکنده (DG) به علت تقاضای روبروی رشد انرژی دارای اهمیت زیادی در سیستم‌های توزیع می‌گردند. مکان‌ها و توانمندی‌های منابع تولید پراکنده تاثیر عمیقی در تلفات سیستم در شبکه توزیع داشته‌اند. در این مقاله، یک ترکیب نوینی از  الگوریتم ژنتیک  (GA)/ بهینه‌سازی ازدحام ذرات  (PSO) برای جایابی و یافتن اندازه بهینه تولید پراکنده در سیستم‌های توزیع معرفی می‌شود. هدف این است که تلفات توان شبکه کمینه شده، تنظیم ولتاژ بهتری صورت گرفته و پایداری ولتاژ در چارچوب قیود عملکردی و امنیتی سیستم در سیستم‌های توزیع شعاعی حاصل شود. یک تحلیل تشریحی روی سیستم‌های 33 و 39 باس انجام شده است تا کارائی روش ارائه شده نشان داده شود. 

خرید و دانلود  برق 68. ترکیب الگوریتم ژنتیک و الگوریتم بهینه‌سازی ازدحام ذرات برای یافتن اندازه و مکان بهینۀ تولید پراکنده در سیستم‌های توزیع


الگوریتم ژنتیک و حل مسئله TSP

 الگوریتم ژنتیک و حل مسئله TSP


در این مقاله ابتدا الگوریتمهای ژنتیک را معرفی کرده و مراحل انجام چنین الگوریتمهایی توضیح داده می شود. بعد از اینکه یک دید کلی نسبت به الگوریتمهای ژنتیک پیدا کردیم به مساله TSP میپردازیم. ابتدا چند روشی که برای حل مسئله TSP ارائه شده است را بیان می کنیم و بعد سعی می کنیم الگوریتمهای ژنتیک مختلفی را برای این مساله مطرح کنیم و  پس بررسی می کنیم که کدام یک از این الگوریتمهای ژنتیک بهتر از بقیه روشها جواب می دهند. در پایان نیز مقایسه ای بین  الگوریتمهای ژنتیک و دیگر الگوریتمها انجام می دهیم.

خرید و دانلود  الگوریتم ژنتیک و حل مسئله TSP


فشرده سازی فراکتالی با الگوریتم ژنتیک، فایل پاورپوئینت

 فشرده سازی فراکتالی با الگوریتم ژنتیک، فایل پاورپوئینت


فشرده سازی فراکتالی
تصویر با GA

فراکتال : شکلی هندسی است که خاصیت خود تشابهی دارد، یعنی نواحی مختلف یک شکل فراکتالی مشابه کل شکل است. 

از تکرار یک شکل ساده با استفاده از یک رابطه بازگشتی، اشکال فراکتالی بوجود می آیند.

اعداد و توابع به کاربرده شده در حالت کلی موهومی هستند.


به مجموعه تبدیل هایw  فوق، که برای یافتن تابع تشابه برای هر ناحیه از تصویر بکار می رود، سیستم تابع تکرار شده محلی ، گفته می شود.


ساختار کد نویسی FIC  با GA


خرید و دانلود  فشرده سازی فراکتالی با الگوریتم ژنتیک، فایل پاورپوئینت


الگوریتمهای ژنتیک

 الگوریتمهای ژنتیک


الگوریتم ژنتیک (Genetic Algorithm – GA) تکنیک جستجویی در علم رایانه برای یافتن راه‌حل تقریبی برای بهینه‌سازی و مسائل جستجو است. الگوریتم ژنتیک نوع خاصی از الگوریتمهای تکامل است که از تکنیکهای زیست‌شناسی فرگشتی مانند وراثت و جهش استفاده می‌کند. در واقع الگوریتم‌های ژنتیک از اصول انتخاب طبیعی داروین برای یافتن فرمول بهینه جهت پیش‌بینی یا تطبیق الگو استفاده می‌کنند.الگوریتم‌های ژنتیک اغلب گزینه خوبی برای تکنیک‌های پیش‌بینی بر مبنای رگرسیون هستند. مختصراً گفته می‌شود که الگوریتم ژنتیک (یا GA) یک تکنیک برنامه‌نویسی است که از تکامل ژنتیکی به عنوان یک الگوی حل مسئله استفاده می‌کند.مسئله‌ای که باید حل شود ورودی است و راه‌حلها طبق یک الگو کد گذاری می‌شوند که تابع fitness نام دارد هر راه حل کاندید را ارزیابی می‌کند که اکثر آنها به صورت تصادفی انتخاب می‌شوند. کلاً این الگوریتم‌ها از بخش های زیر تشکیل می‌شوند :  تابع برازش – نمایش – انتخاب –  تغییر

خرید و دانلود  الگوریتمهای ژنتیک