تحقیق در مورد الگوریتم های ژنتیک (فرمت فایل Word ورد و با قابلیت ویرایش)تعداد صفحات 65

 تحقیق در مورد  الگوریتم های ژنتیک  (فرمت فایل Word ورد و با قابلیت ویرایش)تعداد صفحات 65


دانلود پروژه کامل در مورد الگوریتم ژنتیک (فرمت فایل Wordوورد)تعداد صفحات 65

الگوریتم ژنتیک (Genetic Algorithm – GA) تکنیک جستجویی در علم رایانه برای یافتن راه‌حل تقریبی برای بهینه‌سازی و مسائل جستجو است. الگوریتم ژنتیک نوع خاصی از الگوریتم‌های تکامل است که از تکنیک‌های زیست‌شناسی فرگشتی مانند وراثت و جهش استفاده می‌کند. در واقع الگوریتم‌های ژنتیک از اصول انتخاب طبیعی داروین برای یافتن فرمول بهینه جهت پیش‌بینی یا تطبیق الگو استفاده می‌کنند. الگوریتم‌های ژنتیک اغلب گزینه خوبی برای تکنیک‌های پیش‌بینی بر مبنای تصادف هستند. مختصراً گفته می‌شود که الگوریتم ژنتیک (یا GA) یک تکنیک برنامه‌نویسی است که از تکامل ژنتیکی به عنوان یک الگوی حل مسئله استفاده می‌کند. مسأله‌ای که باید حل شود ورودی است و راه‌حل‌ها طبق یک الگو کد گذاری می‌شوند که تابع fitness نام دارد هر راه حل کاندید را ارزیابی می‌کند که اکثر آنها به صورت تصادفی انتخاب می‌شوند. کلاً این الگوریتم‌ها از بخش های زیر تشکیل می‌شوند: تابع برازش، نمایش، انتخاب، تغییر

فهرست :

فصل اول               

 مقدمه

 به دنبال تکامل…

 ایدۀ اصلی استفاده از الگوریتم ژنتیک

 درباره علم ژنتیک

 تاریخچۀ علم ژنتیک

 تکامل طبیعی (قانون انتخاب طبیعی داروین)

 رابطه تکامل طبیعی با روش‌های هوش مصنوعی

 الگوریتم

 الگوریتم‌های جستجوی ناآگاهانه

الف جستجوی لیست

ب جستجوی درختی

پ جستجوی گراف

 الگوریتم‌های جستجوی آگاهانه

الف جستجوی خصمانه

 مسائل NPHard

 هیوریستیک

 انواع الگوریتم‌های هیوریستیک

  فصل دوم             

 مقدمه

 الگوریتم ژنتیک

 مکانیزم الگوریتم ژنتیک

 عملگرهای الگوریتم ژنتیک

 کدگذاری

 ارزیابی

 ترکیب

 جهش

 رمزگشایی

 چارت الگوریتم به همراه شبه کد آن

 شبه کد و توضیح آن

 چارت الگوریتم ژنتیک

 تابع هدف

 روش‌های کد کردن

 کدینگ باینری

 کدینگ جایگشتی

 کد گذاری مقدار

 کدینگ درخت

 نمایش رشته‌ها

 انواع روش‌های تشکیل رشته

 باز گرداندن رشته‌ها به مجموعه متغیرها

 تعداد بیت‌های متناظر با هر متغیر

 جمعیت

 ایجاد جمعیت اولیه

 اندازه جمعیت

 محاسبه برازندگی (تابع ارزش)

 انواع روش‌های انتخاب

 انتخاب چرخ رولت

 انتخاب حالت پایدار

 انتخاب نخبه گرایی

 انتخاب رقابتی

 انتخاب قطع سر

 انتخاب قطعی بریندل

 انتخاب جایگزینی نسلی اصلاح شده

 انتخاب مسابقه

 انتخاب مسابقه تصادفی

 انواع روش‌های ترکیب

 جابه‌جایی دودوئی

 جابه‌جایی حقیقی

 ترکیب تک‌نقطه‌ای

 ترکیب دو نقطه‌ای

 ترکیب n نقطه‌ای

 ترکیب یکنواخت

 ترکیب حسابی

 ترتیب

 چرخه

 محدّب

 بخش_نگاشته

 احتمال ترکیب

 تحلیل مکانیزم جابجایی

 جهش

 جهش باینری

 جهش حقیقی

 وارونه سازی بیت

 تغییر ترتیب قرارگیری

 وارون سازی

 تغییر مقدار

 محک اختتام اجرای الگوریتم ژنتیک

 انواع الگوریتم‌های ژنتیکی

 الگوریتم ژنتیکی سری

 الگوریتم ژنتیکی موازی

 مقایسه الگوریتم ژنتیک با سیستم‌های طبیعی

 نقاط قوّت الگوریتم‌های ژنتیک

 محدودیت‌های GAها

 استراتژی برخورد با محدودیت‌ها

 استراتژی اصلاح عملگرهای ژنتیک

 استراتژی رَدّی

 استراتژی اصلاحی

 استراتژی جریمه‌ای

 بهبود الگوریتم ژنتیک

 چند نمونه از کاربردهای الگوریتم‌های ژنتیک

  فصل سوم           

 مقدمه

 حلّ معمای هشت وزیر

 جمعیت آغازین

 تابع برازندگی

 آمیزش

 جهش ژنتیکی

 الگوریتم ژنتیک و حلّ مسألۀ فروشندۀ دوره‌گرد

 حل مسأله TSP به وسیله الگوریتم ژنتیک

 مقایسه روشهای مختلف الگوریتم و ژنتیک برای TSP

 نتیجه گیری

 حلّ مسأله معمای سودوکو

 حل مسأله

 تعیین کروموزم

 ساختن جمعیت آغازین یا نسل اول

 ساختن تابع از ارزش

 ترکیب نمونه‌ها و ساختن جواب جدید

 ارزشیابی مجموعه جواب

 ساختن نسل بعد

 مرتب سازی به کمک GA

 صورت مسأله

 جمعیت آغازین

 تابع برازندگی

 انتخاب

 ترکیب

 جهش

فهرست منابع و مراجع

پیوست

واژه‌نامه


خرید و دانلود  تحقیق در مورد  الگوریتم های ژنتیک  (فرمت فایل Word ورد و با قابلیت ویرایش)تعداد صفحات 65


رنگ آمیزی گراف با الگوریتم ژنتیک ‎

 رنگ آمیزی گراف با الگوریتم ژنتیک ‎


 مساله بهینه سازی رنگ آمیزی گراف تعیین حداقل تعداد رنگهای مورد نظر برای رنگ آمیزی گرافی معین است به گونه ای که هیچ دو راس مجاور هم رنگ نباشند و این عدد مورد نظر را عدد کروماتیک گراف می گوئیم . مساله تصمیم گیری رنگ آمیزی گراف ان است که برای یک عدد صحیح m تعیین کنیم که آیا رنگ آمیزی وجود دارد که حداکثر از این m رنگ استفاده کرده و هیچ دو راس مجاوری هم رنگ نباشند. تا امروز برای حالتهای تصمیم گیری و بهینه سازی فوق الگوریتمی از مرتبه چند جمله ای پیدا نشده است . در اینجا سعی شده با استفاده از الگوریتم ژنتیک راه حل های بهینه ای را برای این مسئله ارائه دهیم.

 فهرست :

الگوریتم ژنتیک و الگوریتم هیورستیک

مقدمه ای بر بهینه سازی

الگوریتم های مینیمم یابنده

هیورستیک

انواع الگوریتم های هیورستیک

الگوریتم ژنتیک

فضای جستجو

مفاهیم پایه ای در الگوریتم ژنتیک

کد گذاری دودویی

کدگذاری جهشی

کدگذاری ارزشی

کدگذاری درختی

جمعیت ژنتیکی

تاریع برازندگی

عملگر ترکیب یا جابجایی

ترکیب چند نقطه ای

ترکیب یکنواخت

ترکیب نگاشت جزئی

ترکیب مرتب شده

ترکیب چرخشی

عملگر جهش

روش وارون سازی

روش ژن جزئی

روش درجی

روش درهم آمیخته

روش چرخ رولت

روش رتبه بندی

عملگر ترمیم

نخبه کشی

مراحل اجرای الگوریتم ژنتیک

همگرایی در الگوریتم ژنتیک

روش برش کروموزوم

نحوه جهش ژنتیک


خرید و دانلود  رنگ آمیزی گراف با الگوریتم ژنتیک ‎


دانلود تحقیق رشته برق بازآرائی بهینه شبکه های توزیع به روش الگوریتم ژنتیک جهت کاهش تلفات

 دانلود تحقیق رشته برق بازآرائی بهینه شبکه های توزیع به روش الگوریتم ژنتیک جهت کاهش تلفات


عنوان مقاله: بازآرائی بهینه شبکه های توزیع به روش الگوریتم ژنتیک جهت کاهش تلفات
قالب فایل: WORD
تعداد صفحات: 9 صفحه

فهرست مطالب:

چکیده

1. مقدمه

2. الگوریتم ژنتیک

3. مفاهیم اساسی الگوریتم ژنتیک

3-1: کد کردن

3-2: کروموزوم

3-3: جمعیت

3-4: مقدار برازندگی

3-5: عمل تکثیر

3-6: عملگر جهش

4. مراحل اجرای الگوریتم ژنتیک

5. اعمال الگوریتم ژنتیک به مساله بهینه سازی

6. تعیین تابع ارزیاب

7. تولید جمعیت جدید و شرط توقف الگوریتم و رسیدن به جواب

8. نتایج عددی و مقایسه

9. نتیجه‌گیری و پیشنهادات

مراجع و منابع


چکیده:
در این مقاله الگوریتم ژنتیک جهت حل یک مساله بهینه سازی بکار برده شده است. منظور از بهینه‌سازی انتخاب بهترین ساختار از یک شبکه توزیع جهت کمینه کردن تلفات می باشد. الگوریتم ژنتیک یکی از روشهای پرقدرت در یافتن بهینه مطلق می باشد. نرم افزاری به زبان C برای الگوریتم پیشنهادی تهیه شده است و نتیجه عددی آن برای دو شبکه نمونه آورده شده است.

مقدمه:
تغییر ساختار در شبکه‌های توزیع جهت کاهش تلفات در واقع حل یک مساله بهینه‌سازی می‌باشد. روش بکارگرفته شده در این مقاله جهت حل این مساله بهینه‌سازی استفاده از روش الگوریتم ژنتیک می‌باشد.
روش الگوریتم ژنتیک به دلیل اینکه کلیه جوابهای ممکن را تولید و سپس از میان آنها بهترین گزینه را انتخاب می‌کند. لذا از اطمینان بیشتری برای رسیدن به بهینه مطلق برخوردار می‌باشد.
در یک شبکه توزیع با گستردگی فراوان تنوع بار (اعم از صنعتی، خانگی یا تجاری) و همچنین تغییرات بار بدلیل تنوع فصول، ساعات کار و پیک مصرف و سایر عوامل دیگر و ثایت بودن ساختار شبکه، موجب افزایش تلفات در سیستم می‌شود. در چنین شرایطی لازم است با اعمال یک آرایش بهینه روی شبکه با باز و بسته کردن کلیدهای موجود به بهینه‌ساختن تلفات امیدوار بود.
برای تجدید آرایش روی شبکه‌های توزیع روشهای مختلفی پیشنهاد شده است که می‌توان آنها را به روش‌های خاص و عام تقسیم‌بندی نمود.
الف: روشهای خاص:
در روشهای خاص برای حل مساله الگوریتم خاصی پیشنهاد می‌شود که با استفاده از این آلگوریتم ابتدا یک پاسخ محاسبه شده و از روی آن پاسخ و با توجه به الگوریتم مربوطه پاسخ بعدی تا رسیدن به نقطه بهینه با رعایت قیود مساله ادامه می‌یابد. روشهای خاص به دو روش SEM و SSOM تقسم بندی می گردند.
ب: روشهای عام:
روشهای عام روشهایی هستند که به شکل مساله بستگی نداشته و یگ الگوریتم کلی برای حل مساله پیشنهاد می‌گردد. دراین روش مجموعه وسیعی از جوابها انتخاب گردیده و با انجام عملیاتی بهینه مطلق انتخاب می‌گردد. الگوریتم ژنتیک یکی از این روشهاست. دراین مقاله سعی شده است از این روش جهت کاهش تلفات در شبکه‌های توزیع استفاده گردد.

خرید و دانلود  دانلود تحقیق رشته برق بازآرائی بهینه شبکه های توزیع به روش الگوریتم ژنتیک جهت کاهش تلفات


مروری بر داده کاوی و بررسی شبکه های عصبی‎

 مروری بر داده کاوی و بررسی شبکه های عصبی‎


چندین دهه است که شرکت ها اطلاعات را جمع آوری می نمایند تا با ایجاد یک پایگاه داده انبوه اطلاعات را ذخیره کنند، با این حال که اطلاعات در دسترس آنها قرار دارد فقط تعداد کمی از شرکت ها قادر شده اند به ارزش واقعی ذخیره شده در آنها پی ببرند سوال این شرکتها این است که چگونه میتوان به ارزش واقعی این اطلاعات دست یافت؟ پاسخ آن داده کاوی است، که امروزه در بسیاری از صنعتها از جمله پزشکی، آموزش، ورزش و بسیاری از صنایع دیگر مورد استفاده قرار میگیرد. تکنیکهای بسیاری جهت داده کاوی وجود دارد از جمله شبکه های عصبی مصنوعی، رگرسیون، درخت تصمیم و غیره. همچنین طراحی شده است اشاره SAS که توسط شرکت JMP نرم افزارهایی نیز برای داده کاوی ایجاد شده است که میتوان به نرم افزار کرد. این مقاله به معرفی داده کاوی و برخی از روشهای داده کاوی و همچنین محیطهایی که از داده کاوی بهره میبرند به همراه نرم افزار های آن پرداخته است.

فهرست :

چکیده

مقدمه

داده کاوی

تکنیک های داده کاوی

دسته بندی

رگرسیون گیری

خوشه بندی

تجمع و همبستگی

درخت تصمیم گیری

ویزگی های درخت تصمیم

الگوریتم ژنتیک

شبکه های عصبی مصنوعی

ساختار شبکه عصبی

نورون

معماری شبکه عصبی

شبکه های پیش خور تک لایه

انواع یادگیری در شبکه های عصبی مصنوعی

داده کاوی در پزشکی

داده کاوی در سلامت

نرم افزار های داده کاوی

نتیجه گیری

مراجع


خرید و دانلود  مروری بر داده کاوی و بررسی شبکه های عصبی‎