ترجمه چکیده 3 مقاله انگلیسی جدید داده کاوی

 ترجمه چکیده 3 مقاله انگلیسی جدید داده کاوی


این محصول حاوی یک فایل word ترجمه ی چکیده ی 3 مقاله ی انگلیسی جدید در زمینه ی داده کاوی به همراه فایل pdf مقالات مربوطه است.

خرید و دانلود  ترجمه چکیده 3 مقاله انگلیسی جدید داده کاوی


دانلودپروژه در مورد وب کاوی و data mining و کاربرد آن (فرمت فایل ورد word و با قابلیت ویرایش)تعداد صفحات 62

 دانلودپروژه در مورد وب کاوی و data mining و کاربرد آن (فرمت فایل ورد word و با قابلیت ویرایش)تعداد صفحات 62


چکیده

با افزایش چشمگیر حجم اطلاعات و توسعه وب، نیاز به روش ها و تکنیک هایی که بتوانند امکان دستیابی کارا به داده‌ها و استخراج اطلاعات از آنها را فراهم کنند، بیش از پیش احساس می شود. وب کاوی یکی از زمینه های تحقیقاتی است که با به کارگیری تکنیک های داده کاوی به کشف و استخراج خودکار اطلاعات از اسناد و سرویس‌های وب می پردازد. در واقع وب کاوی، فرآیند کشف اطلاعات و دانش ناشناخته و مفید از داده های وب می باشد. روش های وب کاوی بر اساس آن که چه نوع داده ای را مورد کاوش قرار می دهند، به سه دسته کاوش محتوای وب، کاوش ساختار وب و کاوش استفاده از وب تقسیم می شوند.  طی این گزارش پس از معرفی وب کاوی و بررسی مراحل آن، ارتباط وب کاوی با سایر زمینه های تحقیقاتی بررسی شده و به چالش ها، مشکلات و کاربردهای این زمینه تحقیقاتی اشاره می شود. همچنین هر یک از انواع وب کاوی به تفصیل مورد بررسی قرار می گیرند که در این پروژه بیشتر به وب کاوی در صنعت می پردازم. برای این منظور مدل ها، الگوریتم ها و کاربردهای هر طبقه معرفی می شوند.

فصل اول:مقدمه

مقدمه. 1

فصل دوم:داده کاوی

2- 1 مقدمه ای بر داده کاوی.. 6

2-1-1 چه چیزی سبب پیدایش داده کاوی شده است؟. 7

2-2 مراحل کشف دانش... 9

2- 3 جایگاه داده کاوی در میان علوم مختلف.. 12

2-4 داده کاوی چه کارهایی نمی تواند انجام دهد؟. 14

2-5 داده کاوی و انبار داده ها 14

2-6 داده کاوی و OLAP. 15

2-7 کاربرد یادگیری ماشین و آمار در داده کاوی.. 16

2-8 توصیف داده ها در داده کاوی.. 16

2-8-1 خلاصه سازی و به تصویر در آوردن داده ها 16

2-8-2 خوشه بندی.. 17

2-8-3 تحلیل لینک... 18

2-9 مدل های پیش بینی داده ها 18

2-9-1 دسته بندی.. 18

2-9-2 رگرسیون.. 18

2-9-3 سری های زمانی.. 19

2-10 مدل ها و الگوریتم های داده کاوی.. 19

2-10-1 شبکه های عصبی.. 19

2-10-2 درخت تصمیم. 22

2-10-3 Multivariate Adaptive Regression Splines(MARS) 24

2-10-4 Rule induction. 25

2-10-5 K-nearest neibour and memory-based reansoning(MBR)


خرید و دانلود  دانلودپروژه در مورد وب کاوی و data mining و کاربرد آن (فرمت فایل ورد word و با قابلیت ویرایش)تعداد صفحات 62


ترجمه چکیده 3 مقاله انگلیسی جدید داده کاوی

 ترجمه چکیده 3 مقاله انگلیسی جدید داده کاوی


این محصول حاوی یک فایل word ترجمه ی چکیده ی 3 مقاله ی انگلیسی جدید در زمینه ی داده کاوی به همراه فایل pdf مقالات مربوطه است.

خرید و دانلود  ترجمه چکیده 3 مقاله انگلیسی جدید داده کاوی


وب کاوی در صنعت

 وب کاوی در صنعت


وب کاوی در صنعت


آفیس،داکس،92 صفحه


رشته نرم افزار


فقط شماره صفحه در فهرست مطالب باید شماره گذاری شود .



چکیده


با افزایش چشمگیر حجم اطلاعات و توسعه وب، نیاز به روش ها و تکنیک هایی که بتوانند امکان دستیابی کارا به داده‌ها و استخراج اطلاعات از آنها را فراهم کنند، بیش از پیش احساس می شود. وب کاوی یکی از زمینه های تحقیقاتی است که با به کارگیری تکنیک های داده کاوی به کشف و استخراج خودکار اطلاعات از اسناد و سرویس‌های وب می پردازد. در واقعوب کاوی، فرآیند کشف اطلاعات و دانش ناشناخته و مفید از داده های وب می باشد. روش های وب کاوی بر اساس آن که چه نوع داده ای را مورد کاوش قرار می دهند، به سه دسته کاوش محتوای وب، کاوش ساختار وب و کاوش استفاده از وب تقسیم می شوند. طی این گزارش پس از معرفی وب کاوی و بررسی مراحل آن، ارتباط وب کاوی با سایر زمینه های تحقیقاتی بررسی شده و به چالش ها، مشکلات و کاربردهای این زمینه تحقیقاتی اشاره می شود. همچنین هر یک از انواع وب کاوی به تفصیل مورد بررسی قرار می گیرند که در این پروژه بیشتر به وب کاوی در صنعت می پردازم. برای این منظور مدل ها، الگوریتم ها و کاربردهای هر طبقه معرفی می شوند.


فهرست مطالب


فصل اول:مقدمه
فصل دوم:داده کاوی
2- 1 مقدمه ای برداده کاوی
2-1-1 چه چیزی سبب پیدایش داده کاوی شده است؟
2-2 مراحل کشف دانش
2- 3 جایگاه داده کاوی درمیان علوم مختلف
2-4 داده کاوی چه کارهایی نمیتواندانجام دهد؟
2-5 داده کاوی وانبارداده ها
2-6 داده کاوی وOLAP
2-7 کاربردیادگیری ماشین وآماردرداده کاوی
2-8 توصیف داده هادر داده کاوی
2-8-1 خلاصه سازی وبه تصویردرآوردن داده ها
2-8-2 خوشه بندی
2-8-3 تحلیل لینک
2-9 مدلهای پیشبینی داده ها
2-9-1 دسته بندی
2-9-2 رگرسیون
2-9-3 سریهای زمانی
2-10 مدلهاوالگوریتمهای داده کاوی
2-10-1 شبکه های عصبی
2-10-2 درخت تصمیم
2-10-3 Multivariate Adaptive Regression Splines(MARS)
2-10-4 Rule induction
2-10-5 K-nearest neibour and memory-based reansoning(MBR)
2-10-6 رگرسیون منطقی
2-10-7 تحلیل تفکیکی
2-10-8 مدل افزودنیکلی (GAM)
2-10-9 Boosting
2-11 سلسله مراتب انتخابها
2-12داده کاوی ومدیریت بهینه وب سایتها
2-13داده‌کاوی ومدیریت دانش
فصل سوم: وب کاوی
3-1 تعریف وبکاوی
3-2 مراحل وبکاوی
3-3 وبکاوی وزمینه های تحقیقاتی مرتبط
3-3-1 وب کاوی وداده کاوی
3-3-2 وبکاوی وبازیابی اطلاعات
3-3-3 وب کاوی واستخراج اطلاعات
3-3-4 وب کاوی ویادگیری ماشین
3-4 انواع وبکاوی
3-5 چالشهای وبکاوی
3-6مشکلات ومحدودیتهای وبکاوی درسایتهای فارسی زبان
3-7 محتواکاوی وب
فصل چهارم: وب کاوی در صنعت
4-1 انواع وبکاوی درصنعت
4-1-1وبکاوی درصنعت نفت،گازوپتروشیمی
4-1-1-1 مهندسی مخازن/ اکتشاف
4-1-1-2مهندسی بهره برداری
4-1-1- 3مهندسی حفاری
4-1-1-4بخشهای مدیریتی
4-1-2 کاربردهای دانش داده کاوی درصنعت بیمه
4-1-3کاربردهای دانش داده کاوی درمدیریت شهری
4-1-4کاربردهای داده کاوی درصنعت بانکداری
4-1-4-1بخشبندی مشتریان
4-2 پژوهشهای کاربردی
نتیجه گیری
منابع وماخذفارسی
مراجع وماخذلاتین وسایتهای اینترنتی


مقدمه


با توسعه سیستم های اطلاعاتی، داده به یکی از منابع پراهمیت سازمان ها مبدل گشته است. بنابراین روش ها و تکنیک هایی برای دستیابی کارا به داده، اشتراک داده، استخراج اطلاعات از داده و استفاده از این اطلاعات، مورد نیاز می باشد. با ایجاد و گسترش وب و افزایش چشمگیر حجم اطلاعات، نیاز به این روش ها و تکنیک ها بیش از پیش احساس می شود. وب، محیطی وسیع، متنوع و پویا است که کاربران متعدد اسناد خود را در آن منتشر می کنند. در حال حاضر بیش از دو بیلیون صفحه در وب موجود است و این تعداد با نرخ 3/7 میلیون صفحه در روز افزایش مییابد. با توجه به حجم وسیع اطلاعات در وب، مدیریت آن با ابزارهای سنتی تقریبا غیر ممکن است و ابزارها و روش هایی نو برای مدیریت آن مورد نیاز است. به طور کلی کاربران وب در استفاده از آن با مشکلات زیر روبرو هستند:


1. یافتن اطلاعات مرتبط:

یافتن اطلاعات مورد نیاز در وب دشوار می باشد. روش های سنتی بازیابی اطلاعات که برای جستجوی اطلاعات در پایگاه داده ها به کار می روند، قابل استفاده در وب نمی‌باشند وکاربران معمولا از موتورهای جستجو که مهمترین و رایج ترین ابزار براییافتن اطلاعات در وب می باشند، استفاده می کنند. این موتورها، یک پرس و جوی مبتنی بر کلمات کلیدی از کاربر دریافت کرده و در پاسخ لیستی از اسناد مرتبط با پرس و جوی وی را که بر اساس میزان ارتباط با این پرس و جو مرتب شده اند، به وی ارائه می کنند. اما موتورهای جستجو دارای دو مشکل اصلیهستند. اولا دقت موتورهای جستجو پایین است، چراکه این موتورها در پاسخ به یک پرس و جوی کاربر صدها یا هزاران سند را بازیابی می کنند، در حالی که بسیاری از اسناد بازیابی شده توسط آنها با نیاز اطلاعاتی کاربر مرتبط نمی باشند. دوما میزان فراخواناین موتورها کم می باشد، به آن معنی که قادر به بازیابی کلیه اسناد مرتبط با نیاز اطلاعاتی کاربر نیستند. چراکه حجم اسناد در وب بسیار زیاد است و موتورهای جستجو قادر به نگهداری اطلاعات کلیه اسناد وب، در پایگاه داده های خود نمی باشند. 
2. ایجاد دانش جدید با استفاده از اطلاعات موجود در وب:

این مشکل در واقع بخشی از مشکل مطرح شده در قسمت قبل می باشد. در حال حاضر این سوال مطرح است که چگونه می توان داده های فراوان موجود در وب را به دانشی قابل استفاده تبدیل کرد، به طوری که یافتن اطلاعات مورد نیاز در آن به سادگی صورت بگیرد. همچنین چگونه می توان با استفاده از داده های وب به اطلاعات و دانشی جدید دست یافت.
3. خصوصی سازی اطلاعات:

از آن جا که کاربران متفاوت هر یک درباره نوع و نحوه بازنمایی اطلاعات سلیقه خاصی دارند،این مسئله باید توسط تامین کنندگان اطلاعات در وب مورد توجه قرار بگیرد. برای این منظور با توجه به خواسته ها و تمایلات کاربران متفاوت، نحوه ارائه اطلاعات به آنها باید سفارشی گردد. 


تکنیک های وب کاویقادر به حل این مشکلات می باشند. دروب کاویبه صورت زیر تعریف شده است:


وب کاوی به کارگیری تکنیک های داده کاوی برای کشف و استخراج خودکار اطلاعات از اسناد و سرویس های وب می باشد.
البته تکنیک های وب کاوی تنها ابزار موجود برای حل این مشکلات نیستند. بلکه تکنیک های مختلفی از سایر زمینه های تحقیقاتی همچون پایگاه داده ها، بازیابی اطلاعات، پردازش زبان طبیعیقابل استفاده در این زمینه می باشند. همچنین تکنینک های وب کاوی می توانند به صورت مستقیم یا غیر مستقیم برای حل این مشکلات به کار روند. منظور از رویکرد مستقیم آن است که کاربرد تکنیک های وب کاوی به صورت مستقیم مشکلات مطرح شده را حل می نماید. یک عامل گروه خبری که مرتبط بودن یک خبر به یک کاربر را تعیین می کند، مثالی از این رویکرد می باشد. اما در رویکرد غیر مستقیم، تکنیک های وب کاوی به عنوان بخشی از یک روش جامع تر که به حل این مشکلات می پردازد، مورد استفاده قرار می گیرند.
با توجه به گسترش روز افزون حجم اطلاعات در وب و ارتباط وب کاوی با تجارت الکترونیکی، وب کاوی به یک زمینه تحقیقاتی وسیع مبدل گشته است. طی این گزارش پس از بررسی مراحل وب کاوی،انواع آن معرفی می شوند. سپس ارتباط وب کاوی با سایر زمینه های تحقیقاتی بررسی شده و به چالش ها و مشکلات این زمینه تحقیقاتی اشاره می شود. در ادامه هر یک از انواع وب کاوی به تفصیل مورد بررسی قرار می گیرند. برای این منظور مدل ها، الگوریتم ها و کاربردهایهر طبقه معرفی می شوند. در پایان نیز به برخی از نمونه کاربردهای واقعی وب کاویاشاره می شود.


فصل دوم
داده کاوی



2-1مقدمه­ای بر داده­کاوی


در دو دهه قبل توانایی های فنی بشر در برای تولید و جمع آوری داده‌ها به سرعت افزایش یافته است. عواملی نظیر استفاده گسترده از بارکد برای تولیدات تجاری، به خدمت گرفتن کامپیوتر در کسب و کار، علوم، خدمات دولتی و پیشرفت در وسائل جمع آوری داده، از اسکن کردن متون و تصاویر تا سیستمهای سنجش از دور ماهواره ای، در این تغییرات نقش مهمی دارند .
بطور کلی استفاده همگانی از وب و اینترنت به عنوان یک سیستم اطلاع رسانی جهانی ما را مواجه با حجم زیادی از داده و اطلاعات می‌کند. این رشد انفجاری در داده‌های ذخیره شده، نیاز مبرم وجود تکنولوژی های جدید و ابزارهای خودکاری را ایجاد کرده که به صورت هوشمند به انسان یاری رسانند تا این حجم زیاد داده را به اطلاعات و دانش تبدیل کند: داده کاوی به عنوان یک راه حل برای این مسائل مطرح می باشد. در یک تعریف غیر رسمی داده کاوی فرآیندی است، خودکار برای استخراج الگوهایی که دانش را بازنمایی می کنند، که این دانش به صورت ضمنی در پایگاه داده های عظیم، انباره داده و دیگر مخازن بزرگ اطلاعات، ذخیره شده است. داده کاوی بطور همزمان از چندین رشته علمی بهره می برد نظیر: تکنولوژی پایگاه داده، هوش مصنوعی، یادگیری ماشین، شبکه های عصبی، آمار، شناسایی الگو، سیستم های مبتنی بر دانش، حصول دانش، بازیابی اطلاعات، محاسبات سرعت بالا و بازنمایی بصری داده . داده کاوی در اواخر دهه 1980 پدیدار گشته، در دهه 1990 گامهای بلندی در این شاخه از علم برداشته شده و انتظار می رود در این قرن به........ادامه.


خرید و دانلود  وب کاوی در صنعت