هوا و فضا 1. نوآوری های فناوری جدید به همراه پتانسیل هایی برای کاربرد فضایی

 هوا و فضا 1. نوآوری های فناوری جدید به همراه پتانسیل هایی برای کاربرد فضایی


نوآوری های فناوری جدید به همراه پتانسیل هایی برای کاربرد فضایی 
چکیده اکتشافات و پیشرفت بشر در فضا توسط کشورهای مختلف دنبال می شود تا بتوانند به کشف، کاربرد، و توسعه فضا آشنایی یافته و تجارب بشر را در این زمینه بالا برند. این اهداف شامل : افزایش دانش بشر در ارتباط با فرایند های طبیعی با استفاده از جو فضا ؛ اکتشاف و بررسی منظومه شمسی ؛ امکان دستیابی به سفر های فضایی منظم ؛ بهبود شرایط زندگی بر روی زمین از طریق زندگی و کار در فضا . جنبه های مهم ماموریت های فضایی آینده بر مبنای توسعه زیرساخت ها برای بهینه کردن سطح ایمنی، بازدهی و هزینه می باشد. یکی از موئلفه های اصلی این ماموریت ها شامل مدیریت عملکردهاست. ایستگاه فضایی بین المللی ناسا تجارب گسترده ای را در زمینه زیرساخت ها و عملیات کسب کرده است. به این ترتیب، روش های سازمان دهی شده ای برای اجرای تحقیقات و عملیات موفق فضایی مورد نیاز می باشد که مستلزم ذکاوت و استفاده کارامد از منابع انسانی و فناوری می باشد.بسیاری از فناوری های انقلابی توسط محققان و کارشناسان فناوری ایجاد می شود به عنوان یک امر حیاتی در امنیت ماموریت های فضایی، موفقیت در این زمینه، بازدهی با توجه به هزینه پرداخت شده و سودمند بودن آن ها به شمار می آید. این موارد شامل : فناوری ترکیب پلیمرهای فلزی یونی، لیزرهای غیر هادی، حسگرهای دامین- زمان، و سیستم های ارتباطی ؛ قابلیت هدایت در دمای بالا؛ نانوفناوری؛ راکت های پلاسمای مغناطیسی با تکانش ویژه متغیر, منطق فازی ؛ فناوری موج ضربه ای ؛ و شبکه های عصبی می باشد. بررسی بعضی از این موارد و کاربرد آن ها در ماموریت های فضایی در این مقاله نشان داده می شود.

خرید و دانلود  هوا و فضا 1. نوآوری های فناوری جدید به همراه پتانسیل هایی برای کاربرد فضایی


ریاضی 6. طراحی برنامه شناختی فازی با استفاده از شبکه های عصبی برای پیش بینی سری زمانی پر هرج و مرج

 ریاضی 6. طراحی برنامه شناختی فازی با استفاده از شبکه های عصبی برای پیش بینی سری زمانی پر هرج و مرج


طراحی برنامه شناختی فازی با استفاده از شبکه های عصبی برای پیش بینی سری زمانی پر هرج و مرج 
چکیده.به عنوان یک طرح کارامد برای ارائه اطلاعات و مکانیسم شبیه سازی متناسب با بررسی های بیشمار و در حوزه های کاربردی طرح شناختی فازی(FCMs) توجه زیادی را از جوامع تحقیقاتی مختلف به سمت خود جلب کرده است. به هر حال FCMs سنتی روش کارامدی را برای تعیین حالت سیستم مورد بحث و تعیین کردن کمیت تلفاتی که مبنای نظریه FCMs را مشخص می کنند ایجاد می کند. بنابراین در بسیاری از موارد، ایجاد FCMs برای سیستم های پیچیده بستگی به توان کارشناسی دارد.مدل های ایجاد شده دستی دارای کمبودهایی از نظر خاص بودن مدل و مشکلاتی از نظر دسترسی به حد معقول خود دارند.در این مقاله ما یک شبکه عصبی فازی را برای بالا بردن توان یادگیری FCMs مطرح می کنیم به گونه ای که تعیین اتوماتیک تابع عضویت و مشخص کردن دلایل مربوط به آن با مکانیسم اثباتی FCMs سنتی ادغام می گردد. به این ترتیب، مدل FCMs از سیستم های تحقیقی به صورت اتوماتیک از داده ها ایجاد شده و بنابراین مستقل از موارد کارشناسی شده می باشند.به این ترتیب تفاسیر مشخصی در ارتباط با دلایل FCMsایجاد شده و به این ترتیب فرایند استنباط درکش اسان تر می گردد. به منظور ایجاد صحت در عملکرد، روش های بیان شده در پیش بینی بی نظمی های سری زمانی تست می گردد.بررسی های شبیه سازی شده کارای رویکردهای مطرح شده را نشان می دهد.

خرید و دانلود  ریاضی 6. طراحی برنامه شناختی فازی با استفاده از شبکه های عصبی برای پیش بینی سری زمانی پر هرج و مرج